Making Ammonia Fuel From Alaska's Vast Stranded Renewable Energy Resources

Business of Clean Energy in Alaska Anchorage, AK 18 June 10

Bill Leighty, Director
The Leighty Foundation
Juneau, AK
wleighty@earthlink.net
907-586-1426 206-719-5554 cell

BERING

ustatuk Strait

Wave Power Potential

OCEAN

Making Ammonia Fuel From Alaska's Vast Stranded Renewable Energy Resources

GEOTHERMAL

Making Ammonia Fuel From Alaska's Vast Stranded Renewable Energy Resources

Alaska in the future global energy economy

Map by K. O'Hashi, Nippon Steel

Alaska in the future global energy economy

Why Ammonia? Fertilizer and Fuel

Only liquid fuel embracing:

- Energy cycle inherently pollution free
 - Potentially all RE-source: elec + water + Nitrogen
 - Cost competitive with hydrocarbon fuels?
- Carbon-free: clean burn or conversion; no CO₂
 - Excellent hydrogen carrier; easily "cracked" to H₂
 - Reasonably high energy density
- Decades of global use, infrastructure
 - Practical to handle, store, and transport
 - End-use in ICE, Combustion Turbine, fuel cell
 - Safety: self-odorizing; safety regs; hazard

Ammonia 534 kg H2 EACH

> Hydrogen gas 350 kg H2

Streetcar
New Orleans
1871

"Ammoniacal
Gas
Engine"

Ammonia fueled - Norway 1933

Belgium, 1943
Ammonia Fueled Bus: Thousands of Problem-free Miles

Ammonia + Gasoline Powered

Idle: gasoline

• Full power: 80% ammonia

Summer '07 Detroit → San Francisco

'08: 1,000 hours, ICE, 6 cyl, 100 hp 75% ammonia, 25% propane

Oct '09 Ammonia Fueled V-8 with Hydrogen Injection: Reformed from NH₃ Hydrogen Engine Center, Algona, IA

Ammonia Fuel Uses

- Internal Combustion Engine (ICE)
 - Diesel: NH₃ gas mixed with intake air
 - Spark-ignition: 70%+ NH₃ plus –
 gasoline, ethanol, propane, NG, hydrogen
 - NOx ~ ¼ gasoline engines
- Combustion Turbines
- Direct Ammonia Fuel Cells:
 - Combined heat + power (CHP)
 - No NOx
- Reform ("crack") to liberate hydrogen for fuel
 cells: 2NH₃ → 3H₂ + N₂

Volumetric Energy Density of Fuels (Fuels in their Liquid State)

Ammonia Properties

- C-free fuel: unique physical, chemical properties
- Carbon-free energy cycle, system
- # 2 global industrial chemical trade
- 95%+ from stranded natural gas
 - ~ \$1.00 / MMbtu
 - Trinidad, Australia, Quatar, Algeria, Russia
 - Other from coal gasification → hydrogen + Haber-Bosch
- Liquid at >125 psi at room temperature
- ~ Half energy density gasoline or diesel, volume or weight
- Easily "cracked" to H₂ + N₂ at end-use
- Low flammability, flame spread

Ammonia Properties

- Forms:
 - "Anhydrous" NH₃: useful as fuel
 - Urea: (2) NH₃ + CO₂
 - Ammonium nitrate: NH₄NO₃
 - UAN: aqueous urea + ammonium nitrate
- Decades infrastructure + safety record
 - ~14 MMt / year in USA, mostly fertilizer
 - Inhalation hazard; detected @ 5 ppm
 - OSHA, NIOSH regs + exposure limits
 - Toxic to aquatic life

"Firm" Energy Essential

- Rural Alaska, Islands, Humanity
- Every hour, every year
- Dispatchable
- Strategically: indigenous, secure
- Market price: worth more
- Bankable large projects
- Risk avoidance:
 - Rapid climate change
 - -Death

Alaska Business Opportunities: Business is About Cash Flow

- Maximize cash IN
- Minimize cash OUT
- Short, long term NCF, IRR, NPV
- Enterprises:
 - State, Communities
 - People of Alaska
 - Capital Investors

Alaska Business Opportunities: RE – NH3 = "Green" Ammonia

- 1. Export GW-scale RE: Increase cash IN
- 2. Energy "independence": Reduce cash OUT
 - Villages, communities
 - Indigenous renewables; diverse
 - Seasonal, diurnal variability
 - Storage as NH3 in pressurized tanks
 - "Firm" energy

Expect N-Fertilizer Consumption to Rise: World Food Supply

Figure 4.4.2--Consumption of primary plant nutrients, 1960-2003

40% of humanity requires Haber-Bosch synthetic N-fertilizers

Anhydrous Ammonia (NH3) wholesale price, NOLA (New Orleans, LA)

95% Global Ammonia

Synthesis
Plant
Natural Gas
1 – 3,000 tpd

Haber-Bosch process

Haber-Bosch Process 1909 – 1913 BASF

- NH₃ synthesis
- Coal gasification → H2
- WW I explosives
- 40% humanity: N fertilizer

Haber-Bosch Reactor 1921

Ludwigshafen, Germany

Inside the Black Box: Steam Reforming + Haber-Bosch

$$3 \text{ CH}_4 + 6 \text{ H}_2\text{O} + 4 \text{ N}_2 \rightarrow 3 \text{ CO}_2 + 8 \text{ NH}_3$$

Energy consumption ~33 MMBtu (9,500 kWh) per ton NH_3 Tons CO_2 per ton NH_3 = 1.8

Burrup Peninsula, NW Australia, Natural Gas to Ammonia Plant 760,000 Mt / year \$US 650 million capital cost '06

Ammonia Tanker Burrup Peninsula Western Australia

Ammonia or LPG Tanker

9,000 – 35,000 Mt

Refrigerated

USA NH3 Infrastructure

- 3,000 miles pipelines
 - ~ 250 psi liquid
 - Smaller diameter than NG or hydrogen
- 4.5 MMt large "atmospheric" tank storage
- Mild steel construction
 - Low cost
 - No corrosion or embrittlement

Global Ammonia = 140 million Mt / year

- #2 chemical
- 200 plants, nat gas + coal
- ~ 500 Million Bbl oil
- ~ 2% oil
- ~ 0.5% energy

14 million Mt / yr USA; 60% imported; corn ethanol

Cost: Ammonia from Stranded Natural Gas (NG)

- > Burrup, Australia Plant: 750,000 Mt / year
- > \$650M capital @ 15% capital recovery factor (CRF)
- > 34 MMBtu NG / Mt NH3
- > NG cost \$1.20 / MMBtu long-term
- > Tanker shipping to New Orleans, LA (NOLA) \$50 / Mt
- > CO2 emission 1.8 Mt / Mt NH3

	C-tax	C-tax	C-tax
	0	\$50 / Mt CO2	\$100 / Mt CO2
Capital	98	98	98
NG	41	41	41
Shipping	50	50	50
C-tax	0	90	180
Plant O&M	2	2	2
Total NOLA / Mt	\$191	\$281	\$371

1. Increase Cash IN: Export AK GW-scale RE as "Green" Ammonia

- Can RE compete with "brown"?
- What would C-tax need to be?
- What would global NG price need to be?

RE Ammonia Transmission + Storage Scenario

Wind – to – Ammonia Potential, NW Iowa

Inside the Black Box: HB Plus Electrolysis

Energy consumption ~12,000 kWh per ton NH₃

RE Ammonia Transmission + Storage Scenario

Inside the Black Box: Solid State Ammonia Synthesis

Solid State Ammonia Synthesis (SSAS) NHThree LLC patent

Why SSAS?

- Electrolysis + Haber-Bosch too costly
 - From RE electricity
 - Capital components at low capacity factor (CF)
 - Energy conversion losses
- Proton conducting ceramics (PCC) now
- Solid oxide fuel cell (SOFC) success
- Need stranded RE transmission
- Need RE storage

Solid State Ammonia Synthesis (SSAS)

Goals:

- Renewables-source ammonia (NH3)
- Compete with natural gas source NH3
- High energy conversion efficiency
 - ~50% better than electrolysis → hydrogen + H-B
 - No hydrogen production
- Electricity + water + nitrogen → ammonia
- ~ 50% lower capital cost
- SSAS reactor: SOFC * in reverse

* SOFC: Solid oxide Fuel Cell

SSAS vs H-B NH3 Synthesis

Solid State Ammonia Synthesis vs Haber – Bosch Renewable-source electricity input

- H-B per MW input
 - Capital \$1.5 M
 - 2 tons / day output
- SSAS per MW input
 - Capital \$650 K
 - 3.2 tons / day output

Adak, Alaska
Aleutian Islands
Class 7 Wind: Capacity Factor (CF) >45% ?

- > 2,000 MW Adak Wind-to-ammonia Plant
- > \$5 B total capital @ \$2,500 / kW
- > 45% Capacity Factor (CF)

Windplant Annual Energy Production

As electricity: 21,600 MWh / day

7,884,000 MWh / year

Convert to NH3 by:

Electrolysis + H-B SSAS

Mt (tons) / year 657,000 1,050,000

Sales @ \$300 / Mt \$197 M \$315 M

(plant gate)

Simple ROI 4% 6%

- > 2,000 MW Adak Wind- to- ammonia plant
- > \$5 B total capital @ \$2,500 / kW
- > 45% Capacity Factor (CF)
- > 15% Capital Recovery Factor (CRF)

Windplant Annual Energy Production

As electricity: 7,884,000 MWh / year

	Electrolysis	
	+ H-B	SSAS
Sales: Mt (tons) / year	657,000	1,050,000
Total Cost of Sales:		
Capital @ 15% CRF	\$750M	\$750M
Plant O&M @ \$0.03 / kWh	24M	24M
Input energy	0	0
TOTAL	\$774M	\$774M
Cost / Mt NH3	\$1,178	\$ 737
Shipping @ \$50 / Mt	50	50
Total NOLA / Mt	\$1,228	\$ 787

- > 2,000 MW Adak Wind- to- ammonia plant
- > \$5 B total capital @ \$2,500 / kW
- > 45% Capacity Factor (CF)
- > 12% Capital Recovery Factor (CRF)

Windplant Annual Energy Production

As electricity: 7,884,000 MWh / year

	Electrolysis	
	+ H-B	SSAS
Sales: Mt (tons) / year	657,000	1,050,000
Total Cost of Sales:		
Capital @ 12% CRF	\$600M	\$600M
Plant O&M @ \$0.03 / kWh	24M	24M
Input energy	0	0
TOTAL	\$624M	\$624M
Cost / Mt NH3	\$ 949	\$ 594
Shipping @ \$50 / Mt	50	50
Total NOLA / Mt	\$ 999	\$ 644

Anhydrous Ammonia (NH3) wholesale price, NOLA (New Orleans, LA)

Other Alaska GW-scale Stranded RE

- Higher capacity factor (CF) → 100%
- Lower cost of energy (COE)
- Tanker transport affordable
 - Geothermal
 - Wave, tidal
 - Instream kinetic
 - Solar
 - Biomass

2. Decrease Cash OUT: Village "Energy Independence" via RE Generation + Storage

- What's Annual Average Cost of Energy (COE) ?
- Competitive ?
- What degree of "energy independence"?
- Is SSAS required?

Village-scale 3 Mt / day Mini-NH3 Plant Natural Gas Fueled Haber-Bosch

Village-scale 3 Mt / day Mini-NH3 Plant RE Electricity Haber-Bosch

Liquid Ammonia Tank Storage

Tank capacity, gallons

'08 AEL&P Grant Application: Renewable Energy, AEA, HB152

- Alaska Electric Light & Power (AEL&P) Juneau
- R+D+Demonstration of SSAS system
- \$800K, round one, HB152 grants
- Advance SSAS from lab scale: tech + econ feasible
- Statewide application:
 - "Energy Islands"
 - "Energy Independence"
 - Village survival: imported energy cost, delivery
 - Scaleup: export NH3, tanker
- Demonstrate in major AK city, first: Juneau
- Redeployed to remote community
- Not funded by AEA: no R&D

Sept '09 AASI Grant Application: Denali Commission (Alaska) EETG (Emerging Energy Technology Grant program)

- Alaska Applied Sciences, Inc., Juneau (AASI)
- \$800K: SSAS R+D+Demonstration (same as AEL+P)
- Not funded by Denali:
 - Timing mismatch
 - NHThree LLC prime subcontractor: single-source
 - NHThree LLC ARPA-E application pending: mfg plant
- Statewide application:
 - "Energy Islands"
 - "Energy Independence"
 - Village survival: imported energy cost, delivery
- Demonstrate in major AK city, first: Juneau
- Close loop to AEL+P hydro grid
- Redeploy to village if successful
- Eight support letters

SSAS R+D+Demo Concept

- \$4 5 M total program
- Simulate Alaska community energy island
- SSAS offer RE-source internal energy independence ?
 - Discover, demonstrate tech & econ advantages
 - Conversions efficiency; byproduct heat used
 - Economic: capital, O&M costs
- R&D plus demo pilot plant:
 - NHThree LLC patented IP
 - PCC tube mfg pilot plant

SSAS R+D+Demo Concept

- Deploy at UAS Tech Center, Juneau
- Operate in two modes on AEL&P grid:
 - Hydroelectricity-to-NH3
 - NH3-to-AEL&P grid
- SCADA data collect, analyze
- Modify system hardware + software
- Relocate to smaller community
- Implications for export of large-scale, stranded AK RE

TDX Power, Inc., St. Paul Island
Candidate SSAS Pilot Plant Advanced Test Site

Alaska Business Opportunities: RE – NH3 "Green" Ammonia

Monetizing Alaska's vast RE

- 1. Export from GW-scale RE: Increase cash IN
- 2. Village energy "independence"
 - Indigenous renewables; diverse
 - Seasonal, diurnal variability
 - Storage as NH3: pressurized tanks
 - Reduce cash OUT

Alaska's Immediate Opportunity: SSAS

- Village energy "independence" degree
 - Diverse, indigenous RE sources
 - Convert % to NH₃
 - Storage as NH₃ in steel tanks: annually-firm
 - Deliver energy services: CHP, heat, transport,
 - Competitive price: \$6-8 / gallon diesel + heat fuel
- SSAS R&D and Demonstration
 - NHThree LLC owns SSAS IP patent
 - PCC tube mfg pilot plant
 - RE SSAS pilot plant → AK village(s)

Alaska's Immediate Opportunity: SSAS

- Funding Collaboration: State of AK, Denali, Fed, Industry
 - \$4-5M total R&D&Demo
 - EETG funds
 - SB220 State \$2.5M
 - Denali Commission \$2.5M
 - USDA: '08 Farm Bill Sec 9003 "RE Fertilizer Research"
- Set stage for GW-scale NH₃ export via SSAS
 - Diverse RE
 - Capital cost; CF; lower cost of energy (COE) ?
- Barriers
 - EPA: Ammonia not a fuel
 - DOE: Currently not interested; "toxic"; electricity transmis
 - Industry: too risky, no fuel market, hazardous

MUST Run the World on Renewables – plus Nuclear?

- Climate Change
- Demand growth
- Depletion of Oil and Gas
- Oil spills and pollution
- Only 200 years of Coal left
- Only Source of Income:
 - Sunshine
 - Tides
 - Meteors and dust
- Spend our capital?

What would it take...
Joel Makower

" Americans can be counted on to always do the right thing –

but only after they have tried everything else "

Winston Churchill

The dog caught the car.

Dan Reicher

Making Ammonia Fuel From Alaska's Vast Stranded Renewable Energy Resources

Business of Clean Energy in Alaska Anchorage, AK 18 June 10

DVD's available

Bill Leighty, Director
The Leighty Foundation
Juneau, AK
wleighty@earthlink.net
907-586-1426 206-719-5554 cell

Wave Power Potential

End of 18 June 10 presentation

About 24 minutes, without Q+A

The following slides are for Q+A discussion, immediately following the presentation:

- If the PowerPoint file is still active on the projector;
- If needed;
- If program format includes immediate Q+A.

These are the most complex slides, likely to need explanation or discussion.

Cost: Ammonia from Stranded Natural Gas (NG)

- > Burrup, Australia Plant: 750,000 Mt / year
- > \$650M capital @ 15% capital recovery factor (CRF)
- > 34 MMBtu NG / Mt NH3
- > NG cost \$1.20 / MMBtu long-term
- > Tanker shipping to New Orleans, LA (NOLA) \$50 / Mt
- > CO2 emission 1.8 Mt / Mt NH3

	C-tax	C-tax	C-tax
	0	\$50 / Mt CO2	\$100 / Mt CO2
Capital	98	98	98
NG	41	41	41
Shipping	50	50	50
C-tax	0	90	180
Plant O&M	2	2	2
Total NOLA / Mt	\$191	\$281	\$371

- > 2,000 MW Adak Wind- to- ammonia plant
- > \$5 B total capital @ \$2,500 / kW
- > 45% Capacity Factor (CF)
- > 12% Capital Recovery Factor (CRF)

Windplant Annual Energy Production

As electricity: 7,884,000 MWh / year

	Electrolysis	
	+ H-B	SSAS
Sales: Mt (tons) / year	657,000	1,050,000
Total Cost of Sales:		
Capital @ 12% CRF	\$600M	\$600M
Plant O&M @ \$0.03 / kWh	24M	24M
Input energy	0	0
TOTAL	\$624M	\$624M
Cost / Mt NH3	\$ 949	\$ 594
Shipping @ \$50 / Mt	50	50
Total NOLA / Mt	\$ 999	\$ 644

Anhydrous Ammonia (NH3) wholesale price, NOLA (New Orleans, LA)