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Energy Storage Alternatives

“Electricity”
• Batteries

– Lead-acid
– Nickel-cadmium
– Lithium ion
– Sodium sulfur

• Pumped hydro (PHS)
• Compressed air (CAES) (large ans small scale)
• Natural gas - coupled (NGS) 
• Flow batteries (FBES) 
• Flywheel (FES) 
• Superconducting magnetic (SMES) 
• Supercapacitors
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Energy Storage Alternatives

Other
• Natural gas
• Chemical
• Synthetic hydrocarbons (HC’s) (FTL’s) 
• Thermal energy (TES) 
• NEW

– Compressed hydrogen (35 – 70 bar typical) 
ICE or fuel cell  (FC-HES)

– “Hydricity”
• Conversion from / to electricity
• Hydrogen in caverns and pipelines
• LH2:  liquid hydrogen

– Ammonia liquid in tanks
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Energy Storage System Characteristics - A

• Storage capacity (Mwh, scf, nM3, 
Mt, gallons …. )

• Power (kW, MW, scfm, tpd, gpm ….) 
In / out rate

• Costs
– Capital
– O&M

• Efficiency
• Response time 
• Durability (cycling capacity, lifetime) 
• Depth of discharge 
• Self-discharge
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Energy Storage System Characteristics - B

• Reliability
• Autonomy 
• Adaptation to the generating source  
• Mass and volume energy density  
• Monitoring and control equipment 
• Operational constraints 
• Feasibility
• Environmental
• Safety
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Benefit / Cost  Perspective

• This presentation:
– Analytical framework
– Not all answers

• Must think long-term  
• Benefits: aggregate; external
• Costs: aggregate; external
• Systems thinking tech, econ analysis
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Pickens  Plan
• Bold, large-scale, motivates thinking
• GW scale: economies
• Underestimates 

– Transmission cost, obstacles
– Grid integration, thermal gen plant abuse
– Firming storage needed

• Disregards Hydrogen demand
– Gulf Coast refineries
– Transport fuel

• Disregards Ammonia demand
• Fertilizer
• Fuel

• Attract new turbine manufacturers, designs ? 
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The Great Plains Wind Resource
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Exporting From 12 Windiest Great Plains States
Number of GH2 pipelines or HVDC electric lines necessary to export total wind resource   

Wind energy source:  PNL-7789, 1991                              * at 500 miles average length

$  401

17

19

22

26

29

30

35

41

41

43

48

50

$ Billion
Total 

Capital
Cost *

890

40

40

50

60

60

70

80

90

100

100

100

100

3 GW
export
HVDC
lines

$  5344012,849,3169,984TOTALS

2417124,144435New Mexico 

2419137,272481Colorado

3022157,249551Iowa

3626187,500657Minnesota 

3629206,906725Oklahoma 

4230213,185747Wyoming

4835247,717868Nebraska 

5441291,0961,020Montana

6041293,9501,030South Dakota 

6043305,3651,070Kansas 

6048339,6121,190Texas 

6050345,3201,210North Dakota 

$ Billion
Total 

Capital
Cost *

6 GW
36” GH2 
export 

pipelines

Wind 
Gen 
MW

(nameplate)
(40% CF)

AEP, 
TWhState



10

Wind seasonality, Great Plains
Normalized to 1.0 per season

• Winter = 1.20
• Spring = 1.17
• Summer = 0.69
• Autumn = 0.93

Source:  D. Elliott, et al, NREL
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Wind Seasonality,  Northern Great Plains
Normalized to 1.0 per season
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Annual – scale “Firming”
Great Plains Wind

• Potential, 12 states, ~50% of land area:
– 10,000 TWh = 100 quads = entire USA 

energy, all sources, all uses
– 2,800,000 MW nameplate

• Seasonality:
– Summer minimum
– Spring – Summer maximum storage
– “Firming” energy storage need

per 1,000 MW wind = 450 GWh
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NH3 Ag Fertilizer Tanks, Wind Generators, NW Iowa

“Nurse tanks”
• Cost 1,000 gallon $ 6,321

• Cost 1,450 gallon $ 9,502

• Usually owned by Co-ops 
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Ammonia
620 kg  H2

Hydrogen gas
350 kg  H2
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Total solar: ~ 3 x 10^14 kg / yr

Total wind: ~ 3 x 10^11 kg / yr

Rich, stranded
Resources
Wind – Solar Synergy
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USDOE-EIA:  Estimated 2050 energy use
(All auto fleet using H2 from wind electrolysis)
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The Great Plains Wind Resource

How shall we bring the 
large, stranded, Great 

Plains  renewables
to market ?
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Running the World 
on Renewables
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The Trouble with Renewables

• Diffuse, dispersed:  gathering cost
• Richest are remote:  “stranded”
• Time-varying output:  

– “intermittent”
– “firming” storage required

• Transmission: 
– Costly:  $B
– Low capacity factor (CF) or curtailment
– NIMBY

• Distributed or centralized ?
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Liquid  Ammonia  Tank  Storage

Largest highway-
transportable
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Cost per Gallon:  250 psi vs "Atmospheric"
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“Atmospheric”

Liquid 
Ammonia 

Storage Tank

30,000 Tons
$15M turnkey

-33 C

1 Atm
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Hydrogen vs Ammonia Storage: 
Large-scale,  capital cost per MWh

GH2 salt cavern: $ 120 $ 55
– 150 bar, 200,000 m3 physical
– $70 $30 per m3 physical
– Alton project, Nova Scotia: new, bedded, 5-15 caverns

NH3 tank $   60
– 30,000 Mt optimal econimic size
– “Atmospheric” refrigerated 

Diesel, large surface tanks $   ??



25

Personal Vehicle On-board Storage
300 mile range:

estimated OEM cost per vehicle

Hybrid
Storage drive train Storage
cost efficiency capacity

Gasoline, diesel $    100 25 % 10 gal
Electricity: batteries $ 10,000 90 % ?  kWh
CNG $    300 25 % ?  scf
H2 (70 bar)  ICEHV $ 4,000 35 % 5 kg
H2 (70 bar)  FCHEV $ 3,000 60 % 3 kg
Ammonia (20 bar) $    300 45 % 15 gal
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35 – 70 bar Gaseous Hydrogen On-board Vehicle Storage:  ~ $ 3,000 



27

Car Ownership Cost – GH2 fueled
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Benefit / Cost  Perspective

• Analytical framework:  Not all answers
• Long-term 
• Benefits
• Costs
• Systems thinking tech, econ analysis
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1:  Adequate Renewables

• Run the world; humanity’s needs
• “Distributed” and “Centralized”
• Affordable, benign
• Diverse, synergistic
• Richest are “stranded”

– Far from markets
– No transmission
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2:  When we realize these as 
emergencies:

• Global Warming, Rapid Climate Change
• Energy Security and Cost
• Peak Oil and Natural Gas

We must quickly invest in:
• Energy conservation, efficiency
• Large, new energy supplies:

CO2 – emissions - free
Indigenous
Both distributed,  centralized



31

3:  Shortest path to benign, 
secure, abundant energy 

• Renewables
– Diverse
– Diffuse
– Dispersed

• Centralized:  
– Large, rich;  lower cost than distributed ?
– But stranded (no transmission)

• Ammonia and Gaseous hydrogen (GH2) pipelines
– Conversion, gathering
– Transmission
– Storage: tanks, salt caverns
– Distribution

• Affordable annual-scale firming:
– Ammonia: surface tanks
– GH2: salt caverns – large, deep, solution-mined, geology-limited

• Pilot plants needed:  
– Every major new industrial process 
– IRHTDF
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3:  Shortest path to benign, 
secure, abundant energy 

• Anhydrous Ammonia (NH3) pipelines, tanks
– Conversion, gathering
– Transmission
– Storage: tanks
– Distribution

• Pilot plants needed:  
– Every major new industrial process 
– ’08 Farm Bill Sec 9003: 

“Renewable Fertilizer Research”
• Gaseous Hydrogen (GH2) also candidate
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4:  Ammonia’s principal value
• NOT fuel or fertilizer
• Gather, transmit, store:

– Large-scale, diverse, stranded renewables
– FIRM time-varying-output renewables

• Pipeline transmission, storage
• “Renewables – nuclear Synergy …”, C. Forsberg

• Benign, if from renewables
• Global opportunity
• Ammonia “sector”, not “economy”

– Transportation fuel: ground, air
– DG electricity, CHP, retail value
– Fertilizer
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5:  Pilot plants needed

• Every major new industrial process 
• Diverse, large-scale, stranded 
• Renewables-source systems
• IRHTDF ?  International Renewable 

Hydrogen Transmission Demonstration 
Facility:  include ammonia ?
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Energy Storage System Characteristics --
Ammonia off the charts ?

• Storage capacity (Mwh, scf, nM3, Mt, gallons …. )
• Power (MW, scfm ….)   In / out rate
• Costs

– Capital
– O&M

• Efficiency
• Response time 
• Durability (cycling capacity) 
• Reliability
• Autonomy 
• Self-discharge
• Depth of discharge 
• Adaptation to the generating source  
• Mass and volume densities of energy 
• Monitoring and control equipment 
• Operational constraints 
• Feasibility
• Environmental
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Flywheel:  
• “Electricity” example
• Fast out, slow in
• Short-term:  millisecond – minute
• High volume energy density
• High cost / MWh
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Flow Battery:  Electrochemical



42Compressed Air Energy Storage - CAES
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CAES
Compressed Air Energy Storage

• Lowest-cost “electricity” storage
• Geology-dependent
• Requires generation fuel: NG
• Hours to days storage capacity;

not seasonal renewables
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CAES
• McIntosh Unit 1, AL , began ’91 110 MW
• Bremen, Germany, began ’78 290 MW

• Iowa Energy Storage Park 268 MW
– Capital cost ~ $220M = engrg + construction 

(Nov 06 estimate)
– Construction cost @ 268 MW @ $800 / kW = 

$214M
– Mt. Simon site, Dallas Center; several others 

rejected
– DOE, via SNL = $2.9M, mostly geology 
– Completion May ’11
– Energy storage capacity ??
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Storage Projects, Manufacturers

WIND ENERGY STORAGE PROJECTS  (minute to weekly scale)
• California Wind Integration   
• Huxley Hill   
• Iowa Stored Energy Park   
• Minwind
• Palmdale MicroGrid
• Sorne Hill   
• Windy Harbour

MAJOR ENERGY STORAGE MANUFACTURERS   
• Beacon Power   
• General Compression   
• Maxwell Technologies   
• NGK Insulators   
• Ridge Energy Storage   
• Sumitomo Electric   
• Flow: VRB-ESS, VRB Power Systems
• Flow:
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Benefit / Cost  Perspective

• Analytical framework:  Not all answers
• Long-term 
• Benefits
• Costs
• Systems thinking tech, econ analysis

– Whence the hydrogen ?  Conversion cost, loss ?
– Whence the ammonia ?  Conversion cost, loss ?
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High-press
Electrolyzers

Generators
ICE, CT, FC

AC grid
Wholesale

End users
Retail

Wind
Generators

Wind
Generators

500 miles
Hydrogen Gas
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20" diameter

1,500 -- 500  psi

Cars, Buses,
Trucks, Trains

Liquefy Aircraft Fuel

Pipeline Energy
Storage

City  gate

1,500 psi 500 psi

Transmission Distribution

Hydrogen Transmission Scenario
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Electrolyzers

Generators
ICE, CT, FC

AC grid
Wholesale

End users
Retail

Wind
Generators

Wind
Generators

1,000 miles Hydrogen Gas
Pipeline 36" diameter, 1,500 - 500 psi

Cars, Buses,
Trucks, Trains

Liquefy Aircraft Fuel

Pipeline Storage = 240 GWh

Geologic
Storage ?

Storage

Storage

Storage

Hydrogen Energy Storage



49Alton, Nova Scotia Natural Gas Cavern Storage

*

Same principle for GH2 storage
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Alton, Nova Scotia
Natural Gas Storage

4 salt caverns, each:
– 1- 1.5 bcf gas @ 150 bar
– 700 m deep 
– Physical volume 225,000 m3

Total project cost $60M CDN
Cost per m3 = $60

Expandable to 15 caverns:
• Total physical volume = 4 M m3

• Incremental cost per cavern = $3M
• Total project cost $93M CDN
• Cost per m3 = $24
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Alton Gas Storage:  Hydrogen Example

Expandable to 15 caverns:
• Total physical volume = 3.6M m3

• Incremental cost per cavern = $3M
• Total gas storage @ 150 bar = 540M Nm3 *
• Hydrogen = 3.36 kWh / Nm3 *
• Total energy storage as hydrogen = 

1,920 MWh
• Total project cost $93M CDN
• Cost per m3 = $27
• Cost per MWh = $120 $55

* Normal cubic meter
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Domal
Salt

Storage 
Caverns

PB ESS

Natural gas

Hydrogen
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Electrolyzers
Haber-Bosch

Ammonia
Synthesis

Generators
ICE, CT,

FC

AC grid
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Liquid
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Transmission
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Cars, Buses,
Trucks, Trains
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N 2

Air
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Plant
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Air

Ammonia  Transmission  Scenario
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Geologic Oxygen storage ?

Electrolyzers
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Inside the Black Box: 
Steam Reforming + Haber-Bosch

3 CH4 + 6 H2O + 4 N2 → 3 CO2 + 8 NH3

ASU

H-B

Nat Gas
H2O

AIR
N2

O2

SMR

NH3

H2

Electricity

CO2

Energy consumption ~33 MBtu (9500 kWh) per ton NH3
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Inside the Black Box: 
HB Plus Electrolysis

3 H2O → 3 H2 + 3/2 O2
3 H2 + N2 → 2 NH3

ASU

H-B

Electricity
H2O

AIR
N2

O2

Electrolyzer

NH3

H2

Energy consumption ~12,000 kWh per ton NH3
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Electrolyzers
Haber-Bosch

Ammonia
Synthesis

Generators
ICE, CT,

FC

AC grid
Wholesale

End users
Retail

Wind
Generators

Wind
Generators

Liquid
Ammonia

Transmission
Pipeline

Cars, Buses,
Trucks, Trains

Aircraft Fuel

H 2

H20 Liquid
Ammonia Tank

Storage

N 2

Air
Separation

Plant

Electricity

Air Solid State Ammonia Synthesis ?

Ammonia  Transmission  Scenario
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Inside the Black Box: 
Solid State Ammonia Synthesis

ASU

SSAS

H2O

AIR

6 H2O + 2 N2 → 3 O2 + 4 NH3

N2

NH3

O2O2

Energy consumption 7,000 – 8,000 kWh per ton NH3

Electricity

ASU:  Air 
Separation Unit
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SSAS vs H-B NH3  Synthesis
(Solid State Ammonia Synthesis  vs Haber – Bosch)

• H-B
– $1.5 M per MWe input
– 2 tons / day output per MWe input
– O&M cost / ton:  ??

• SSAS
– $650 K per MWe input
– 3.2 tons / day output per MWe input
– O&M cost / ton:  lower ?
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Incremental Capital Cost Analysis:
With and without

Annual-scale Firming Storage

• From “Ammonia ’06 …” presentation

• Simple capital recovery factor (CRF) method

• Novel system: no experience

• Rough estimates of NH3 system components

• Many other cases to consider
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2,000 MW  (nameplate)
Great Plains Windplant Output

Energy production at windplant 40 % Capacity Factor:

As electricity: 19,200 MWh / day 
7,000,000 MWh / year     

tons/hr tons/day    tons/yr

As H2 @ 80% electrolysis efficiency       16 390         142,350

As NH3 @ 70% conversion efficiency     97 2,321 847,321

10” NH3 pipeline capacity as H2 11 264          96,360

10” NH3 pipeline capacity as NH3            60 1,440        525,600
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Case 4a:  Capital costs, no firming
2,000 MW Great Plains windplant

Elec GH2 NH3 Liquid Pipeline “Terminal” or “City gate”

Capital costs:
– Wind generators, 1.5 MW @ $1,500 / kW $  3,000 M
– Electrolyzers, 450 psi out @ $350 / kWe $     700 M
– Electrolyzer power electronics saving $         0 M
– H2 compressors $       10 M
– NH3 synthesis plants (2) $     750 M
– Pipeline $     800 M
– Pipeline pumping $         8 M
– Pipeline infrastructure $         2 M

Total, without firming storage $  5,270 M
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Case 4a:  Annual costs, no firming
Elec GH2 NH3 Liquid Pipeline “Terminal” or “City gate”

Unsubsidized 1

Production capital costs @ 15% CRF @ $  5,270 M $  790 M

Conversion and transmission losses
– Electrolyzer conversion loss @ 20% AEP 2 $    80 M
– Compression energy $      1 M
– NH3 synthesis plant $    80 M
– Pipeline pumping energy $      2 M
– Pipeline misc O&M $      1 M  

Total annual costs $  954 M
Total cost per mt NH3 = $ 1,126
Total cost per kg NH3 = $ 1.13

1 Subsidies, value-adders: PTC, O2 sales, REC
2 Annual Energy Production @ $US 0.057 / kWh
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Case 4b: Capital costs, Firming storage tanks 
2,000 MW Great Plains windplant

Elec GH2 NH3 Liquid Pipeline Firming tanks “Terminal” or “City gate”

Capital costs
– Wind generators, 1.5 MW @ $1,500 / kW $  3,000 M
– Electrolyzers, 450 psi out @ $350 / kWe $    700 M
– Electrolyzer power electronics saving $        0 M
– H2 compressors $      10 M
– NH3 synthesis plant $    750 M
– Pipeline $    800 M
– Pipeline pumping $        8 M
– Pipeline infrastructure $        2 M
– Tanks:   4 tanks @ $ 25 M $    100 M
Total, with firming storage $ 5,370 M

Incremental capital cost of NH3 tanks = $ 100 / 5,370 = ~ 0.2 %
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Case 4b: Annual costs, Firming storage tanks
2,000 MW Great Plains windplant

Elec GH2 NH3 Liquid Pipeline + tanks City gate

• Capital costs @ 15% CRF @ $  5,370 $  805 M

• Conversion and transmission losses
– Electrolyzer conversion loss @ 20% AEP $   80 M
– Compression $     1 M
– NH3 synthesis plants (2) $   80 M
– Pipeline pumping energy $     2 M
– Pipeline misc O&M $     1 M 
– Tank in / out   $     0 M

Total annual costs $ 969 M
Total cost per Mt NH3 = $ 1,144
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Case 4c: Annual costs,
Firming storage, tanks, reform to H2

Elec GH2 NH3 Liquid Pipeline +Tanks Reform to H2
Unsubsidized 

Production capital costs @ 15% CRF @ $  5,370 M $  806 M

Conversion and transmission losses
– Electrolyzer conversion loss @ 20% AEP $    80 M
– Compression energy $      1 M
– NH3 synthesis plant $    80 M
– Pipeline pumping energy $      2 M
– Pipeline misc O&M $      1 M 
– Reformer conversion loss @ 15% AEP $    60 M  

Total annual costs $  1,030 M
Total cost per Mt H2 = $ 7,253
Total cost per kg H2 = $ 7.25
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Alaska Renewable Energy Grant Program
• $50M + $50M this FY for “commercialization” projects
• Some left for R&D&D
• Next session:  new R&D&D program ?
• Apply now for SSAS,  R+D+D project

– Alaska Electric Light & Power (AEL&P), Juneau
• Applicant
• Manage
• Host on-site

– Goal: Alaska village energy independence via RE-NH3
• Annually-firm
• All energy needs
• Must have RE resources

• System:
– RE electricity source: Juneau hydro
– SSAS module  ~ 10 kWe input
– NH3 storage tank
– NH3-fueled ICE genset ~ 50 kW: return to grid
– Village energy system prototype
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1,000 hours, ICE, 6 cyl, 100 hp 
75% ammonia,  25% propane
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Hydrogen Engine Center, Algona, IA
1,000 hours, ICE, 6 cyl, 100 hp 
75% ammonia,  25% propane
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Alaska Renewable Energy Grant Program

Budget:
– SSAS R&D from AEL&P to NThree, LLC $ 500K
– Build 5-50 kW RE-NH3 system for AEL&P $ 100K
– Build identical system for co-applicant $ 100K
– Management + system integration + contingency $ 200K

Total $ 900K

Applications due 8 Oct, 10 Nov 08
Potential co-applicants:

– Iowa Power Fund: preliminary app “Diligence Committee”
– Other states
– Industry
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’08 Farm Bill
“Renewable Fertilizer Research”

• Section 9003, Congress passed May 08
• RE – NH3 concept, commercialize
• Report to Secy USDA: 18 months
• $1M authorized

– No appropriation
– Next admin, congress ?
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’08 Farm Bill
“Renewable Fertilizer Research”

Genesis: collaboration
Environmental Law and Policy Center (ELPC), Chicago

Jesse Kharbanda, John Moore, Howard Learner (ED)

The Leighty Foundation (funds ELPC)
Bill Leighty

AmmPower
John Holbrook

Helped compose for House + Senate Ag Committees: (handouts)
– “Farm Energy Backgrounder”
– “Ammonia Q+A”
– Proposed Farm Bill language
– Proposed appropriation at $950 K

Delivered to House and Senate Ag Committees June 07
– House: Peterson (MN), Holden (PA)
– Senate: Harkin (IA), Eldon Boes (staff; ASME Congress Fellow)
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