

Energy Storage Alternatives

"Electricity"

- Batteries
 - Lead-acid
 - Nickel-cadmium
 - Lithium ion
 - Sodium sulfur
- Pumped hydro (PHS)
- Compressed air (CAES) (large ans small scale)
- Natural gas coupled (NGS)
- Flow batteries (FBES)
- Flywheel (FES)
- Superconducting magnetic (SMES)
- Supercapacitors

Energy Storage Alternatives

Other

- Natural gas
- Chemical
- Synthetic hydrocarbons (HC's) (FTL's)
- Thermal energy (TES)
- NEW
 - Compressed hydrogen (35 70 bar typical) →
 ICE or fuel cell (FC-HES)
 - "Hydricity"
 - Conversion from / to electricity
 - Hydrogen in caverns and pipelines
 - LH2: liquid hydrogen
 - Ammonia liquid in tanks

Energy Storage System Characteristics - A

- Storage capacity (Mwh, scf, nM3, Mt, gallons)
- Power (kW, MW, scfm, tpd, gpm)
 In / out rate
- Costs
 - Capital
 - **O&M**
- Efficiency
- Response time
- Durability (cycling capacity, lifetime)
- Depth of discharge
- Self-discharge

Energy Storage System Characteristics - B

- Reliability
- Autonomy
- Adaptation to the generating source
- Mass and volume energy density
- Monitoring and control equipment
- Operational constraints
- Feasibility
- Environmental
- Safety

Benefit / Cost Perspective

- This presentation:
 - Analytical framework
 - Not all answers
- Must think long-term
- Benefits: aggregate; external
- Costs: aggregate; external
- Systems thinking

 tech, econ analysis

Pickens Plan

- Bold, large-scale, motivates thinking
- GW scale: economies
- Underestimates
 - Transmission cost, obstacles
 - Grid integration, thermal gen plant abuse
 - Firming storage needed
- Disregards Hydrogen demand
 - Gulf Coast refineries
 - Transport fuel
- Disregards Ammonia demand
 - Fertilizer
 - Fuel
- Attract new turbine manufacturers, designs ?

Exporting From 12 Windiest Great Plains States

Number of GH2 pipelines or HVDC electric lines necessary to export total wind resource Wind energy source: PNL-7789, 1991 * at 500 miles average length

State	AEP, TWh	Wind Gen MW (nameplate) (40% CF)	6 GW 36" GH2 export pipelines	\$ Billion Total Capital Cost *	3 GW export HVDC lines	\$ Billion Total Capital Cost *
North Dakota	1,210	345,320	50	50	100	60
Texas	1,190	339,612	48	48	100	60
Kansas	1,070	305,365	43	43	100	60
South Dakota	1,030	293,950	41	41	100	60
Montana	1,020	291,096	41	41	90	54
Nebraska	868	247,717	35	35	80	48
Wyoming	747	213,185	30	30	70	42
Oklahoma	725	206,906	29	29	60	36
Minnesota	657	187,500	26	26	60	36
lowa	551	157,249	22	22	50	30
Colorado	481	137,272	19	19	40	24
New Mexico	435	124,144	17	17	40	24
TOTALS	9,984	2,849,316	401	\$ 401	890	\$ 534

Wind seasonality, Great Plains Normalized to 1.0 per season

- Winter = 1.20
- Spring = 1.17
- Summer = 0.69
- Autumn = 0.93

Source: D. Elliott, et al, NREL

Wind Seasonality, Northern Great Plains

Normalized to 1.0 per season

Annual – scale "Firming" Great Plains Wind

- Potential, 12 states, ~50% of land area:
 - 10,000 TWh = 100 quads = entire USA energy, all sources, all uses
 - 2,800,000 MW nameplate
- Seasonality:
 - Summer minimum
 - Spring Summer maximum storage
 - "Firming" energy storage need per 1,000 MW wind = 450 GWh

NH₃ Ag Fertilizer Tanks, Wind Generators, NW Iowa

Ammonia 620 kg H₂

Hydrogen gas 350 kg H₂

Comparing the world's energy resources*

^{*}yearly potential is shown for the renewable energies. Total reserves are shown for the fossil and nuclear "use-them, lose-them" resources. Word energy use is annual.

USDOE-EIA: Estimated 2050 energy use (All auto fleet using H₂ from wind electrolysis)

The Trouble with Renewables

- Diffuse, dispersed: gathering cost
- Richest are remote: "stranded"
- Time-varying output:
 - "intermittent"
 - "firming" storage required
- Transmission:
 - Costly: \$B
 - Low capacity factor (CF) or curtailment
 - NIMBY
- Distributed or centralized ?

Liquid Ammonia Tank Storage

Cost per Gallon: 250 psi vs "Atmospheric"

Tank capacity, gallons

"Atmospheric"
Liquid
Ammonia
Storage Tank

30,000 Tons \$15M turnkey

-33 C 1 Atm

Hydrogen vs Ammonia Storage: Large-scale, capital cost per MWh

GH2 salt cavern:

 $$120 \rightarrow 55

- 150 bar, 200,000 m³ physical
- \$70 → \$30 per m³ physical
- Alton project, Nova Scotia: new, bedded, 5-15 caverns

NH3 tank

\$ 60

- 30,000 Mt optimal econimic size
- "Atmospheric" refrigerated

Diesel, large surface tanks

\$??

Personal Vehicle On-board Storage 300 mile range: estimated OEM cost per vehicle

		Hybrid	
	Storage	drive train	Storage
	<u>cost</u>	<u>efficiency</u>	<u>capacity</u>
Gasoline, diesel	\$ 100	25 %	10 gal
Electricity: batteries	\$ 10,000	90 %	? kWh
CNG	\$ 300	25 %	? scf
H2 (70 bar) ICEHV	\$ 4,000	35 %	5 kg
H2 (70 bar) FCHEV	\$ 3,000	60 %	3 kg
Ammonia (20 bar)	\$ 300	45 %	15 gal

35 – 70 bar Gaseous Hydrogen On-board Vehicle Storage: ~ \$ 3,000

Preliminary Results - Do Not Cite

Hydrogen Storage Compressed Hydrogen

Tank Design

Under a previous DOE contract, we evaluated the cost of compressed H₂ tank systems designed to accommodate 5,000 and 10,000 psi pressures.

Car Ownership Cost – GH2 fueled

Hydrogen Storage Next Steps

Ownership Cost Example

A complete ownership cost assessment will require that both vehicle purchase cost and operating costs be considered.

Benefit / Cost Perspective

- Analytical framework: Not all answers
- Long-term
- Benefits
- Costs
- Systems thinking

 tech, econ analysis

1: Adequate Renewables

- Run the world; humanity's needs
- "Distributed" and "Centralized"
- Affordable, benign
- Diverse, synergistic
- Richest are "stranded"
 - Far from markets
 - No transmission

2: When we realize these as emergencies:

- Global Warming, Rapid Climate Change
- Energy Security and Cost
- Peak Oil and Natural Gas

We must quickly invest in:

- Energy conservation, efficiency
- Large, new energy supplies:
 - CO₂ emissions free
 - Indigenous
 - Both distributed, centralized

3: Shortest path to benign, secure, abundant energy

- Renewables
 - Diverse
 - Diffuse
 - Dispersed
- Centralized:
 - Large, rich; lower cost than distributed?
 - But stranded (no transmission)
- Ammonia and Gaseous hydrogen (GH2) pipelines
 - Conversion, gathering
 - Transmission
 - Storage: tanks, salt caverns
 - Distribution
- Affordable annual-scale firming:
 - Ammonia: surface tanks
 - GH2: salt caverns large, deep, solution-mined, geology-limited
- Pilot plants needed:
 - Every major new industrial process
 - IRHTDF

3: Shortest path to benign, secure, abundant energy

- Anhydrous Ammonia (NH3) pipelines, tanks
 - Conversion, gathering
 - Transmission
 - Storage: tanks
 - Distribution
- Pilot plants needed:
 - Every major new industrial process
 - '08 Farm Bill Sec 9003:
 - "Renewable Fertilizer Research"
- · Gaseous Hydrogen (GH2) also candidate

4: Ammonia's principal value

- NOT fuel or fertilizer
- Gather, transmit, store:
 - Large-scale, diverse, stranded renewables
 - FIRM time-varying-output renewables
 - Pipeline transmission, storage
 - "Renewables nuclear Synergy ...", C. Forsberg
- Benign, if from renewables
- Global opportunity
- Ammonia "sector", not "economy"
 - Transportation fuel: ground, air
 - DG electricity, CHP, retail value
 - Fertilizer

5: Pilot plants needed

- Every major new industrial process
- Diverse, large-scale, stranded
- Renewables-source systems
- IRHTDF? International Renewable Hydrogen Transmission Demonstration Facility: include ammonia?

Energy Storage System Characteristics --Ammonia off the charts ?

- Storage capacity (Mwh, scf, nM3, Mt, gallons)
- Power (MW, scfm) In / out rate
- Costs
 - Capital
 - O&M
- Efficiency
- Response time
- Durability (cycling capacity)
- Reliability
- Autonomy
- Self-discharge
- Depth of discharge
- Adaptation to the generating source
- Mass and volume densities of energy
- Monitoring and control equipment
- Operational constraints
- Feasibility
- Environmental

Flywheel:

- "Electricity" example
- Fast out, slow in
- · Short-term: millisecond minute
- High volume energy density
- High cost / MWh

Flow Battery: Electrochemical

CAES Compressed Air Energy Storage

- Lowest-cost "electricity" storage
- Geology-dependent
- Requires generation fuel: NG
- Hours to days storage capacity; not seasonal renewables

CAES

McIntosh Unit 1, AL, began '91 110 MW

Bremen, Germany, began '78 290 MW

Iowa Energy Storage Park

268 MW

- Capital cost ~ \$220M = engrg + construction (Nov 06 estimate)
- Construction cost @ 268 MW @ \$800 / kW = \$214M
- Mt. Simon site, Dallas Center; several others rejected
- DOE, via SNL = \$2.9M, mostly geology
- Completion May '11
- Energy storage capacity ??

Storage Projects, Manufacturers

WIND ENERGY STORAGE PROJECTS (minute to weekly scale)

- California Wind Integration
- Huxley Hill
- lowa Stored Energy Park
- Minwind
- Palmdale MicroGrid
- Sorne Hill
- Windy Harbour

MAJOR ENERGY STORAGE MANUFACTURERS

- Beacon Power
- General Compression
- Maxwell Technologies
- NGK Insulators
- Ridge Energy Storage
- Sumitomo Electric
- Flow: VRB-ESS, VRB Power Systems
- Flow:

Benefit / Cost Perspective

- Analytical framework: Not all answers
- Long-term
- Benefits
- Costs
- Systems thinking

 tech, econ analysis
 - Whence the hydrogen? Conversion cost, loss?
 - Whence the ammonia? Conversion cost, loss?

Hydrogen Transmission Scenario

Hydrogen Energy Storage **Storage** AC grid Wholesale 1,000 miles Hydrogen Gas Wind Pipeline 36" diameter, 1,500 - 500 psi Generators Generators ICE, CT, FC Pipeline Storage = 240 GWh End users Retail Electrolyzers Cars, Buses, Trucks, Trains Storage Wind Generators Aircraft Fuel Liquefy Geologic Storage? **Storage**

Alton, Nova Scotia Natural Gas Cavern Storage

Alton, Nova Scotia Natural Gas Storage

4 salt caverns, each:

- 1- 1.5 bcf gas @ 150 bar
- 700 m deep
- Physical volume 225,000 m³
 Total project cost \$60M CDN
 Cost per m³ = \$60

Expandable to 15 caverns:

- Total physical volume = 4 M m³
- Incremental cost per cavern = \$3M
- Total project cost \$93M CDN
- Cost per m³ = \$24

Alton Gas Storage: Hydrogen Example

Expandable to 15 caverns:

- Total physical volume = 3.6M m³
- Incremental cost per cavern = \$3M
- Total gas storage @ 150 bar = 540M Nm3 *
- Hydrogen = 3.36 kWh / Nm3 *
- Total energy storage as hydrogen = 1,920 MWh
- Total project cost \$93M CDN
- Cost per $m^3 = 27
- Cost per MWh = \$120 → \$55

Domal Salt Storage Caverns

Natural gas Hydrogen

Ammonia Transmission Scenario

Inside the Black Box: Steam Reforming + Haber-Bosch

$$3 \text{ CH}_4 + 6 \text{ H}_2\text{O} + 4 \text{ N}_2 \rightarrow 3 \text{ CO}_2 + 8 \text{ NH}_3$$

Energy consumption ~33 MBtu (9500 kWh) per ton NH₃

Inside the Black Box: HB Plus Electrolysis

Energy consumption ~12,000 kWh per ton NH₃

Ammonia Transmission Scenario

Inside the Black Box: Solid State Ammonia Synthesis

SSAS vs H-B NH3 Synthesis

(Solid State Ammonia Synthesis vs Haber – Bosch)

- H-B
 - \$1.5 M per MWe input
 - 2 tons / day output per MWe input
 - O&M cost / ton: ??
- SSAS
 - \$650 K per MWe input
 - 3.2 tons / day output per MWe input
 - O&M cost / ton: lower?

Incremental Capital Cost Analysis: With and without Annual-scale Firming Storage

- From "Ammonia '06 ..." presentation
- Simple capital recovery factor (CRF) method
- Novel system: no experience
- Rough estimates of NH3 system components
- Many other cases to consider

2,000 MW (nameplate) Great Plains Windplant Output

Energy production at windplant 40 % Capacity Factor:

As electricity: 19,200 MWh / day

7,000,000 MWh / year

	tons/hr	tons/day	tons/yr
As H2 @ 80% electrolysis efficiency	16	390	142,350
As NH3 @ 70% conversion efficiency	97	2,321	847,321
10" NH3 pipeline capacity as H2	11	264	96,360
10" NH3 pipeline capacity as NH3	60	1,440	525,600

Case 4a: Capital costs, no firming 2,000 MW Great Plains windplant

Elec → GH2 → NH3 → Liquid Pipeline → "Terminal" or "City gate"

Capital costs:

-	Wind generators, 1.5 MW @ \$1,500 / kW	\$	3,000 M
-	Electrolyzers, 450 psi out @ \$350 / kWe	\$	700 M
_	Electrolyzer power electronics saving	\$	0 M
_	H2 compressors	\$	10 M
_	NH3 synthesis plants (2)	\$	750 M
_	Pipeline	\$	800 M
_	Pipeline pumping	\$	8 M
-	Pipeline infrastructure	\$	2 M
Tot	al, without firming storage	\$	5,270 M
	a.,	Ψ.	·, · · · · · ·

Case 4a: Annual costs, no firming

Elec → GH2 → NH3 → Liquid Pipeline → "Terminal" or "City gate"

Unsubsidized 1

² Annual Energy Production @ \$US 0.057 / kWh

Production capital costs @ 15% CRF @ \$ 5,270 M \$ 790 M Conversion and transmission losses Electrolyzer conversion loss @ 20% AEP 2 80 M **Compression energy** 1 M NH3 synthesis plant 80 M Pipeline pumping energy 2 M Pipeline misc O&M 1 M \$ 954 M Total annual costs Total cost per mt NH3 = \$1,126Total cost per kg NH3 = \$ 1.13 ¹ Subsidies, value-adders: PTC, O₂ sales, REC

Case 4b: Capital costs, Firming storage tanks 2,000 MW Great Plains windplant

Elec → GH2 → NH3 → Liquid Pipeline → Firming tanks → "Terminal" or "City gate"

Capital costs

-	Wind generators, 1.5 MW @ \$1,500 / kW	\$ 3,000 M
-	Electrolyzers, 450 psi out @ \$350 / kWe	\$ 700 M
-	Electrolyzer power electronics saving	\$ 0 M
-	H2 compressors	\$ 10 M
-	NH3 synthesis plant	\$ 750 M
-	Pipeline	\$ 800 M
-	Pipeline pumping	\$ 8 M
_	Pipeline infrastructure	\$ 2 M
-	Tanks: 4 tanks @ \$ 25 M	\$ 100 M
Tota	al, with firming storage	\$ 5,370 M

Incremental capital cost of NH3 tanks = \$ 100 / 5,370 = ~ 0.2 %

Case 4b: Annual costs, Firming storage tanks 2,000 MW Great Plains windplant Elec → GH2 → NH3 → Liquid Pipeline + tanks → City gate

•	Capital costs @ 15% CRF @ \$ 5,370	\$ 805 M
•	Conversion and transmission losses	
	 Electrolyzer conversion loss @ 20% AEP 	\$ 80 M
	Compression	\$ 1 M
	 NH3 synthesis plants (2) 	\$ 80 M
	 Pipeline pumping energy 	\$ 2 M
	 Pipeline misc O&M 	\$ 1 M
	Tank in / out	<u>\$ 0 M</u>
	Total annual costs	\$ 969 M
	Total cost per Mt NH3 = \$ 1,144	

Case 4c: Annual costs, Firming storage, tanks, reform to H2

Elec → GH2 → NH3 → Liquid Pipeline +Tanks → Reform to H2
Unsubsidized

Production capital costs @ 15% CRF @ \$ 5,370 M	\$ 806 M
Conversion and transmission losses	
 Electrolyzer conversion loss @ 20% AEP 	\$ 80 M
 Compression energy 	\$ 1 M
 NH3 synthesis plant 	\$ 80 M
 Pipeline pumping energy 	\$ 2 M
 Pipeline misc O&M 	\$ 1 M
 Reformer conversion loss @ 15% AEP 	\$ 60 M
Total annual costs	\$ 1,030 M
Total cost per Mt H2 = \$ 7,253	

Total cost per kg H2 = \$7.25

Alaska Renewable Energy Grant Program

- \$50M + \$50M this FY for "commercialization" projects
- Some left for R&D&D
- Next session: new R&D&D program ?
- Apply now for SSAS, R+D+D project
 - Alaska Electric Light & Power (AEL&P), Juneau
 - Applicant
 - Manage
 - Host on-site
 - Goal: Alaska village energy independence via RE-NH3
 - Annually-firm
 - All energy needs
 - Must have RE resources
- System:
 - RE electricity source: Juneau hydro
 - SSAS module ~ 10 kWe input
 - NH3 storage tank
 - NH3-fueled ICE genset ~ 50 kW: return to grid
 - Village energy system prototype

1,000 hours, ICE, 6 cyl, 100 hp 75% ammonia, 25% propane

Hydrogen Engine Center, Algona, IA 1,000 hours, ICE, 6 cyl, 100 hp 75% ammonia, 25% propane

Alaska Renewable Energy Grant Program

Budget:

 SSAS R&D from AEL&P to NThree, LLC 	\$ 500K
 Build 5-50 kW RE-NH3 system for AEL&P 	\$ 100K
 Build identical system for co-applicant 	\$ 100K
 Management + system integration + contingend 	sy <u>\$ 200K</u>
Total	\$ 900K

Applications due 8 Oct, 10 Nov 08

Potential co-applicants:

- lowa Power Fund: preliminary app → "Diligence Committee"
- Other states
- Industry

'08 Farm Bill "Renewable Fertilizer Research"

- Section 9003, Congress passed May 08
- RE NH3 concept, commercialize
- Report to Secy USDA: 18 months
- \$1M authorized
 - No appropriation
 - Next admin, congress ?

'08 Farm Bill "Renewable Fertilizer Research"

Genesis: collaboration

- Environmental Law and Policy Center (ELPC), Chicago
 Jesse Kharbanda, John Moore, Howard Learner (ED)
- The Leighty Foundation (funds ELPC)
 Bill Leighty
- AmmPowerJohn Holbrook

Helped compose for House + Senate Ag Committees: (handouts)

- "Farm Energy Backgrounder"
- "Ammonia Q+A"
- Proposed Farm Bill language
- Proposed appropriation at \$950 K

Delivered to House and Senate Ag Committees June 07

- House: Peterson (MN), Holden (PA)
- Senate: Harkin (IA), Eldon Boes (staff; ASME Congress Fellow)

