

Mendenhall Glacier, Juneau, AK June '71

Mendenhall Glacier, Juneau, AK 10 October 10

Mendenhall Glacier, Juneau, AK 10 October 10

Rapid climate change

Spruce bark beetle kill, Alaska

Shishmaref, Alaska Winter storms coastal erosion

35,000 walrus stranded in NW Alaska: their usual sea ice is gone

Baby walrus are often crushed during stampedes ashore

闡

MUST Run the World on Renewables - plus Nuclear?

- Climate Change
- Ocean acidification
- Sea level rise
- Demand growth
- Water for energy
- War
- Depletion of Oil and Gas and Coal
- Only Source of Income:
 - Sunshine, tides
 - Spending our capital

Annual Income

*yearly potential is shown for the renewable energies. Total reserves are shown for the fossil and nuclear "use-them, lose-them" resources. Word energy use is annual.

ASME Energy Sustainability and Fuel Cell Science 30 June – 2 July 2014, Boston

Bill Leighty, Director
The Leighty Foundation
Juneau, AK
wleighty@earthlink.net
907-586-1426 206-719-5554 cell

Trouble with Renewables

- Diffuse, dispersed: gathering cost
- Richest are remote: "stranded"
 - High intensity
 - Large geographic extent
- Time-varying output:
 - "Intermittent"
 - "Firming" integration + storage required
- Distributed AND centralized

Trouble with Renewables: Big Three

- 1. Gathering and Transmission
- 2. Storage: Annual-scale firming → dispatchable
- 3. Integration
 - Extant energy systems
 - Electricity grid
 - Fuels: CHP, transportation, industry

Beyond "Smart Grid"

- Next big thing; panacea
- Primarily DSM
- More vulnerable to cyberattack?
- Adds no physical:
 - Transmission, gathering, distribution
 - Storage
- Run the world on renewables?
- Must think:
 - Beyond electricity
 - Complete energy systems
 - ALL energy

"Transmission"

- Electrofuels
 - CHP on-site: Combined Heat and Power
 - Transport
 - Industrial
- Renewable-source electricity
- Underground pipelines
- Carbon-free fuels: hydrogen, ammonia
- Low-cost storage:
 - \$ 0.10 0.20 / kWh capital
- RE systems, GW scale

Solar Hydrogen Energy System

Landscape: RE-source NH3

- Alaska demo project: AASI
- Complete RE systems:
 - Generation, harvesting
 - Gathering + Transmission
 - Annual-scale firming storage
 - Integration: distribution + end-use
- Artificial Photosynthesis: UK, July '14
- Ag Ventures Alliance, Iowa: Wind → NH3 study
- Synthesis tech survey
 - From H2
 - From electricity
- ICE gensets conversion to NH3: demand demo

Proton Ventures BV, Netherlands www.protonventures.com

PROJECT: Complete RE – NH₃ Synthesis + Storage System

- > NH3 synthesis from RE electricity, water, air (N₂)
- > Liquid NH₃ tank storage
- > Regeneration + grid feedback
- > SCADA instrumentation > UAF ACEP

Alaska NH3 Pilot Plant Budget

EETF via AEA	\$ 750 K
Technology in-kind	\$ 100 K
WindToGreen in-kind	\$ 100 K
AASI in-kind	\$ 50 K
TOTAL	\$ 1 M

EETF Emerging Energy Technology Fund, State of Alaska

AEA Alaska Energy Authority, State of Alaska

AASI Alaska Applied Sciences, Inc.

Landscape Survey: RE-source NH3

- WindToGreen, LLC technology survey
- Researchers always want "Better catalysts"
- New methods, pathways, to NH3 synthesis
- All "Non-Haber" tech is at TRL 1-3
- Electrolysis + Haber-Bosch (EHB) is lowest risk
- Long-term, costly effort ahead for RE-NH3
- High cost of RE-NH3: competition, C-tax?

Landscape: RE-source NH3

- Sources: Electricity or Hydrogen?
- Markets:
 - Transportation Fuel
 - Ag Fuel
 - N-fertilizer
 - Distributed Generation (DG) Fuel
 - Industrial Fuel + Feedstock
 - "Run World on Renewables"

RE Systems: Carriers and Storage Strategies

- Electricity
- Gaseous Hydrogen (GH2)
- Liquid Hydrogen (LH2)
- Anhydrous Ammonia (NH3)
- Toluene (C7H8) ←→
 Methylcyclohexane (C7H14)
- Artificial Photosynthesis (AP)

C-emissions-free Hydrogen transport and storage: Chiyoda Chemical, Japan Toluene (C7H8) ←→ Methylcyclohexane (C7H14)

RE Systems: Carriers and Storage Strategies

- Electricity
- Gaseous Hydrogen (GH2)
- Liquid Hydrogen (LH2)
- Anhydrous Ammonia (NH3)
- Toluene (C7H8) ←→
 Methylcyclohexane (C7H14)
- Artificial Photosynthesis (AP)

Global Artificial Photosynthesis Project
The Royal Society, Chicheley Hall, UK July 8 – 10, 2014
Tom Faunce, Australia National University, Convenor
Leighty for NH3 Fuel Association: "What Shall We Do With The Photohydrogen?"

RE Ammonia Transmission + Storage Scenario

Inside the Black Box: HB Plus Electrolysis

Energy consumption ~12,000 kWh per ton NH₃

RE Ammonia Transmission + Storage Scenario

Beyond Haber-Bosch "BHB"

"Atmospheric"
Liquid
Ammonia
Storage Tank
(corn belt)

30,000 Tons
190 GWh
\$ 15M turnkey
\$ 80 / MWh
\$ 0.08 / kWh

-33 C 1 Atm

- -WindToGreen, LLC, 2013Technology Advisory Group
- Landscape assessment
- Literature search
- Personal followup with researchers

- Haber-Bosch (H-B) and electrolysis plus H-B (EHB)
- Polymer membrane: nano as enabling technology
 - Nanoparticle catalyst impregnated polymer membrane
 - Nanostructure catalyst
 - Nanostructured polymer membrane
 - Other nanoparticles catalysts and nanostructure catalyst carriers
 - Composite electrolytes
- Polymer membrane "Nafion": not compatible with NH3
- Ammonia-Compatible Polymer (UMinnesota)
 Marc Hillmyer's Nanostructured PEM,
 alleged to be durable in NH3
- Membrane Electrode Assembly (MEA): PEM fuel cell

- Proton Conducting Ceramic (PCC) electrolytes:
 Examples (BaCeO3, CaZrO3, SrZrO3, LaGaO3)
- Other PCC: MP2O7 Intermediate-temp PCC + M-N catalysts at Los Alamos National Lab (LANL)
- Oxides:
 - Complex perovskite-type
 - Pyrochlore-type
 - Fluorite-type
- Oxygen ion conducting ceramic electrolyte
- Plasma
 - Non Thermal (NTP)
 - Microwave

Beyond Haber-Bosch "BHB"

Emulate SOFC construction

- Molten salt electrolyte
 - Licht
 - Hyung Chool Yoon
- lonic Liquid electrolyte
- Diamond nanoparticles catalyst, substrate, deep UV light:
 U. Wisconsin Madison (R.J. Hamers)
- Solar-assisted two-stage metal nitride redox, low-P NH3 synth, from ETH, Zurich
- N2 Cleavage and Hydrogenation by a Trinuclear Titanium Polyhydride Complex
- Cyclic Pressurization (ICE)
- Lithium (proprietary)

H2 generation to feed H-B

- Artificial Photosynthesis (AP)
- Catalyst pseudo-random search: JCAP
- Biology: algae, other
- Gasification
- Nanoptek, proprietary:
 light or electricity input → H2
- Other

Actual Technology qualified through successful mission operations

Actual Technology completed and qualified through test and demonstration

Technology prototype demonstration in a simulated operational environment

Prototype demonstration in a relevant environment

Technology basic validation in a relevant environme

Technology basic validation in a laboratory environment

Analytical and experimental critical function and/or characteristic proof of concept

Technology concept and/or application formulated

Basic principles observed and reported

Electrolysis + Haber-Bosch (EHB) system
For RE-source Electricity, Water, and Air inputs

Review of electrochemical ammonia production technologies and materials

S. Giddey, S.P.S. Badwal, A. Kulkarni

CSIRO Energy Technology Victoria, Australia

Fig. 2 — Various electrolytic options under consideration for ammonia synthesis.

NH3 Synthesis by Proton Conducting Solid Electrolyte

NH3 Synthesis by Molten Salt Electrolyte

NH3 Synthesis via Molten Salt Electrolyte With Water as Hydrogen Source

Perovskites

Fluorites

Pyrochlores

Proton Conducting Ceramic Electrolyte Cell

TOP: Double-chamber BOTTOM: Single-chamber

Cluster Model of "NAFION" Membrane ~ 10 -8 mol per cm² per second

What is NTP?

- NTP species include: energetic electrons, photons, atoms, and molecules, highly reactive radicals, ozone, etc. Ozone is the most widely used NTP species.
- NTP is generated though electrical discharge in gas (in atmosphere or liquid).

Highest single-pass conversion = 13%

Source: Roger Ruan, University of Minnesota

Solar Thermochemical Ammonia

P. Pfromm, R. Michalsky*, Kansas State University

Plasmon-Induced Ammonia Synthesis through Nitrogen Photofixation with Visible Light Irradiation

Ag Ventures Alliance, Mason City, Iowa Electrolysis + Haber-Bosch (EHB) system For RE-source Electricity, Water, and Air inputs

Source: Proton Onsite

Proton Ventures BV, Netherlands www.protonventures.com

Case A-1: Self-generate Wind

Case A-1: Self-generate Wind

Capital Recovery Factor (CRF) per cent

■ Cost of NH3 per Mt (Metric ton) at plant gate

Case A-2: Self-generate Wind; no Grid Connect

Case A-2: Self-generate Wind; no Grid Connect

Case A-4: Self-generate Wind: High Wind AEP

Case A-4: Self-generate Wind: High Wind AEP

Capital Recovery Factor (CRF) per cent

Case B-1: Buy Wind @ \$ 0.05 / kWh

Case B-1: Buy Wind @ \$0.05 / kWh

Case B-3: Buy Wind @ \$ 0.05 / kWh; High Capital Cost EHB

Case B-3: Buy Wind @ \$0.05 / kWh; High Capital Cost EHB

Conclusion Landscape: RE-source NH3

- Alaska demo project: AASI
- Artificial Photosynthesis: UK, July '14
- Ag Ventures, Iowa: Wind → NH3 study
- Synthesis tech survey
 - From H2
 - From electricity
- ICE gensets conversion: demand demonstrate
- Complete RE-source energy systems

Conclusion Landscape: RE-source NH3 Synthesis

- 1. H-B reactor only good candidate
 - RE H2 + N2
 - RE electricity → electrolyzer → H2 + O2
 - Complex system: suited for Alaska deployment?
 - MWe input scale costs, efficiency unknown
- 2. Beyond Haber-Bosch "BHB" Electrolytic
 - Diverse technologies
 - TRL 1-3
 - Less complex system than H-B and EHB ?
 - MWe input scale costs, efficiency unknown

Conclusion Landscape: RE-source NH3 Synthesis

- Electricity source RE:
 H-B reactor only good candidate
 Electrolysis plus Haber-Bosch (EHB)
- Hydrogen source RE:
 H-B reactor only good candidate
 Beyond Haber-Bosch "BHB" Electrolytic
- Many technology options:
 - All TRL 1-3
 - Years and \$ for R&D, Demo, to commercialize

