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Mendenhall Glacier, Juneau, AK 

      June ‘71 



Mendenhall Glacier,  Juneau,  AK 
10 October 10 



Mendenhall Glacier,  Juneau,  AK 
10 October 10 



Spruce bark beetle kill,  Alaska  

Rapid climate change 



Shishmaref,  Alaska 
Winter storms coastal erosion 



35,000 walrus have come ashore in NW Alaska: usual sea ice is gone 



35,000 walrus stranded in NW Alaska: their usual sea ice is gone 
 



Baby walrus are often crushed during stampedes ashore 



MUST Run the World on Renewables – plus Nuclear ? 

• Climate Change 

• Ocean acidification 

• Sea level rise 

• Demand growth  

• Water for energy 

• War  

• Depletion of Oil and Gas and Coal  

• Only Source of Income: 

• Sunshine, tides 

• Spending our capital 

Presenter
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These problems have become emergencies.
Earth’s only source of income is radiant energy from the Sun, our local star.
All other energy sources are capital, which we are spending, on our way to going out of business.  What would that mean for humanity?  For Earth?

We all want an energy system for Earth which is equitable, accessible, and affordable for all humans.  And it must be sustainable, with net-zero carbon dioxide (CO2) emissions to prevent further global warming.  The only income our spaceship Earth has is radiant energy from the sun – which we call “renewable” – and some matter from meteorites and comet dust.



Annual Income 

Capital 
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Trouble with Renewables 

•  Diffuse, dispersed:  gathering cost 
•  Richest are remote:  “stranded” 

–  High intensity 
–  Large geographic extent 

•  Time-varying output:   
– “Intermittent” 
– “Firming” integration + storage required 

•  Distributed AND centralized 



Trouble with Renewables: 
Big Three 

1. Gathering and Transmission 
2.  Storage: Annual-scale firming   

  dispatchable 
3.  Integration 

• Extant energy systems 
• Electricity grid 
• Fuels:  CHP, transportation, industry 



Beyond  “Smart  Grid”  
• Next big thing;  panacea 
• Primarily DSM 
• More vulnerable to cyberattack ? 
• Adds no physical: 

– Transmission, gathering, distribution 
– Storage 

• Run the world on renewables ? 
• Must think: 

– Beyond electricity 
– Complete energy systems 
– ALL energy 
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“Transmission”  
•  Electrofuels  

• CHP on-site:  Combined Heat and Power 
• Transport 
•  Industrial 

•  Renewable-source electricity 
•  Underground pipelines 
•  Carbon-free fuels: hydrogen, ammonia 
•  Low-cost storage:   
  $ 0.10 – 0.20 / kWh  capital 
•  RE systems, GW scale  
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Landscape:  RE-source NH3 
• Alaska demo project:  AASI 
• Complete RE systems:   

–  Generation, harvesting 
–  Gathering + Transmission 
–  Annual-scale firming storage 
–  Integration:  distribution + end-use 

• Artificial Photosynthesis:  UK, July ‘14 
• Ag Ventures Alliance, Iowa:  Wind  NH3 study 
• Synthesis tech survey 

–  From H2 
–  From electricity 

• ICE gensets conversion to NH3:  demand demo 
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Proton Ventures BV,  Netherlands 
www.protonventures.com 
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PROJECT:  Complete RE – NH3  Synthesis + Storage System 
 > NH3 synthesis from RE electricity, water, air (N2) 
 > Liquid NH3 tank storage  
 > Regeneration + grid feedback 
 > SCADA instrumentation   UAF - ACEP 



Alaska NH3 Pilot Plant Budget 

EETF via AEA    $ 750 K 
Technology in-kind  $ 100 K 
WindToGreen in-kind  $ 100 K 
AASI in-kind    $   50 K 
TOTAL     $  1 M 
 
EETF Emerging Energy Technology Fund, State of Alaska 
AEA  Alaska Energy Authority, State of Alaska 
AASI  Alaska Applied Sciences, Inc. 



Landscape Survey: RE-source NH3 

•  WindToGreen, LLC  technology survey 
•  Researchers always want “Better catalysts” 
•  New methods, pathways, to NH3 synthesis 
•  All “Non-Haber” tech is at TRL 1-3 
•  Electrolysis + Haber-Bosch (EHB) is lowest risk  
•  Long-term, costly effort ahead for RE-NH3 
•  High cost of RE-NH3: competition, C-tax ?  
 



Landscape:  RE-source NH3 
– Sources: Electricity  or  Hydrogen ? 
– Markets: 

•   Transportation Fuel 
•   Ag Fuel 
•   N-fertilizer 
•   Distributed Generation (DG) Fuel   
•   Industrial Fuel + Feedstock 
•   “Run World on Renewables” 

 



RE  Systems: 
Carriers  and  Storage  Strategies 

–  Electricity 
–  Gaseous Hydrogen (GH2) 
–  Liquid Hydrogen (LH2) 
–  Anhydrous Ammonia (NH3) 
–  Toluene (C7H8)    
   Methylcyclohexane (C7H14) 
–  Artificial Photosynthesis (AP) 

 



C-emissions-free Hydrogen transport and storage:  Chiyoda Chemical, Japan   
Toluene (C7H8)     Methylcyclohexane (C7H14) 
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RE  Systems: 
Carriers  and  Storage  Strategies 

–  Electricity 
–  Gaseous Hydrogen (GH2) 
–  Liquid Hydrogen (LH2) 
–  Anhydrous Ammonia (NH3) 
–  Toluene (C7H8)    
   Methylcyclohexane (C7H14) 
–  Artificial Photosynthesis (AP) 

 



Global Artificial Photosynthesis Project 
The Royal Society,  Chicheley Hall,  UK    July 8 – 10, 2014 

Tom Faunce, Australia National  University,  Convenor 
Leighty for NH3 Fuel Association:  “What Shall We Do With The Photohydrogen?” 

 



Chicheley Hall,  The Royal Society,  UK 
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Norsk Hydro 
Electrolyzers 
2 MW  each 

Ammonia from 
hydrogen 

from zero-cost  
off-peak hydro 
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Inside the Black Box:  
HB Plus Electrolysis 

3 H2O → 3 H2 + 3/2 O2 
3 H2 + N2 → 2 NH3 

ASU 

H-B 

Electricity 
H2O 

AIR 
N2 

O2 

Electrolyzer 

NH3 

H2 

Energy consumption ~12,000 kWh per ton NH3 
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Beyond Haber-Bosch “BHB” 
 



“Atmospheric” 
Liquid 

Ammonia 
Storage Tank 

(corn belt) 
 

30,000 Tons 

190 GWh 
$ 15M turnkey 

$ 80 / MWh 

$ 0.08 / kWh 

 

-33 C 

1 Atm 
’09 ARPA-E “Grids” Goal:  $100 / kWh 
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NH3 Synthesis Technologies 

–WindToGreen, LLC , 2013 
               Technology Advisory Group 
–  Landscape assessment  
–  Literature search 
–  Personal followup with researchers 



NH3 Synthesis Technologies 

–  Haber-Bosch (H-B) and electrolysis plus H-B (EHB)  
–  Polymer membrane:  nano as enabling technology 

•  Nanoparticle catalyst impregnated polymer membrane 
•  Nanostructure catalyst     
• Nanostructured polymer membrane   
• Other nanoparticles catalysts and nanostructure 

 catalyst carriers 
• Composite electrolytes    

–  Polymer membrane “Nafion”:  not compatible with NH3 
–  Ammonia-Compatible Polymer (UMinnesota)  
  Marc Hillmyer’s Nanostructured PEM, 
  alleged to be durable in NH3 
–  Membrane Electrode Assembly (MEA):  PEM fuel cell 



NH3 Synthesis Technologies 
–  Proton Conducting Ceramic (PCC) electrolytes:  
  Examples (BaCeO3,  CaZrO3,  SrZrO3,  LaGaO3)       
–  Other PCC: MP2O7 Intermediate-temp PCC + M-N    

 catalysts at Los Alamos National Lab (LANL)   
–  Oxides: 

• Complex perovskite-type           
• Pyrochlore-type     
• Fluorite-type  

–  Oxygen ion conducting ceramic electrolyte    
–  Plasma 

• Non Thermal (NTP) 
• Microwave   
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Beyond Haber-Bosch  “BHB” 
Emulate SOFC construction 

Presenter
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NH3 Synthesis Technologies 

–   Molten salt electrolyte 
• Licht  
• Hyung Chool Yoon 

–   Ionic Liquid electrolyte 
–   Diamond nanoparticles catalyst,  substrate, deep UV light:

  U. Wisconsin Madison (R.J. Hamers)   
–  Solar-assisted two-stage metal nitride redox, low-P NH3 

  synth, from ETH, Zurich  
–   N2 Cleavage and Hydrogenation by a Trinuclear Titanium 

  Polyhydride Complex  
–  Cyclic Pressurization (ICE)     
–  Lithium (proprietary) 
 

 



H2 generation to feed H-B 

–  Artificial Photosynthesis (AP) 
–  Catalyst pseudo-random search: JCAP 
–  Biology:  algae, other 
–  Gasification 
–  Nanoptek, proprietary:  
   light or electricity input  H2 
–  Other 
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Electrolysis + Haber-Bosch (EHB) system  
For RE-source Electricity, Water, and Air inputs 



Review of electrochemical 
ammonia production 

technologies and materials 
 

S. Giddey, S.P.S. Badwal, A. Kulkarni 
 

CSIRO Energy Technology  
Victoria,  Australia 





NH3 Synthesis by 
Proton Conducting Solid Electrolyte  



NH3 Synthesis by 
Molten Salt Electrolyte 



NH3 Synthesis via Molten Salt Electrolyte 
With Water as Hydrogen Source 



   Perovskites            Fluorites          Pyrochlores 



Proton Conducting Ceramic Electrolyte Cell 
TOP:  Double-chamber                              BOTTOM:  Single-chamber 



Cluster Model of  “NAFION”  Membrane 
~ 10 -8  mol per cm2  per second 



Source:  Roger Ruan,  University of  Minnesota 

Highest single-pass 
conversion = 13% 
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Plasmon-Induced Ammonia Synthesis through 
Nitrogen Photofixation with Visible Light Irradiation 
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beam evaporation method. c) Extinction spectrum of the Au NPs on
Nb-SrTiO3. d) A schematic illustration of the NH3 synthesis device
using a Nb-SrTiO3 photoelectrode loaded with Au NPs.



Ag Ventures Alliance,  Mason City,  Iowa 
Electrolysis + Haber-Bosch (EHB) system  

For RE-source Electricity, Water, and Air inputs 



Source:  Proton Onsite 



Proton Ventures BV,  Netherlands 
www.protonventures.com 



Source:  FINDS,  Keith Stokes 



Source:  FINDS,  Keith Stokes 
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Case A-1:  Self-generate Wind 

Capital Recovery  BOS Purch Elec Energy O&M Except Elec Energy 
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Case A-1: Self-generate Wind 

Cost of NH3 per Mt (Metric ton) at plant gate 
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Case A-2:  Self-generate Wind; no Grid Connect 

Capital Recovery  BOS Purch Elec Energy O&M Except Elec Energy 
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Case A-2: Self-generate Wind; no Grid Connect 

Cost of NH3 per Mt (Metric ton) at plant gate 
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Case A-4:  Self-generate Wind: High Wind AEP 

Capital Recovery  BOS Purch Elec Energy O&M Except Elec Energy 
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Case B-1: Buy Wind @ $ 0.05 / kWh 

Capital Recovery Buy wind BOS utility electricity O&M non-energy 
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Case B-3: Buy Wind @ $ 0.05 / kWh; High Capital Cost EHB  

Capital Recovery Buy wind BOS utility electricity O&M non-energy 
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Conclusion 
Landscape:  RE-source NH3 

• Alaska demo project:  AASI 
• Artificial Photosynthesis:  UK, July ‘14 
• Ag Ventures, Iowa:  Wind  NH3 study 
• Synthesis tech survey 

–  From H2 
–  From electricity 

• ICE gensets conversion: demand demonstrate 
• Complete RE-source energy systems 

 



Conclusion 
Landscape:  RE-source  NH3  Synthesis 

1. H-B reactor only good candidate  
– RE - H2  +  N2 
– RE electricity  electrolyzer  H2  +  O2  
– Complex system:  suited for Alaska deployment ? 
– MWe input scale costs, efficiency unknown 

 
2. Beyond Haber-Bosch “BHB” Electrolytic 

–  Diverse technologies 
–  TRL  1 – 3 
–  Less complex system than H-B and EHB ? 
–  MWe input scale costs, efficiency unknown 

 
 



Conclusion 
Landscape:  RE-source  NH3  Synthesis 

• Electricity source RE: 
  H-B reactor only good candidate  
  Electrolysis plus Haber-Bosch (EHB) 
• Hydrogen source RE: 
  H-B reactor only good candidate  
  Beyond Haber-Bosch “BHB” Electrolytic 
• Many technology options: 
  All  TRL 1 – 3 
  Years and $ for R&D, Demo, to commercialize 
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Ammonia Fuel Production with Firming Storage from Diverse, Stranded, Renewable Energy Resources
1,000 MW = 1 GW (gigawatt) is a large windplant. Worldwide total installed windpower is less that 50,000 MW, while USA is less than 8,000 MW (at end of 2004).
The global wind power industry installed 7,976 megawatts (MW) in 2004, an increase in total installed generating capacity of 20%
Global Wind Energy Council (GWEC). Global wind power capacity at end of 2004 = 47,317MW.  Five countries = ~80% of total:
Germany = 16,629 MW
Spain = 8,263 MW
United States = 6,740 MW
Denmark = 3,117 MW
India = 3,000 MW. 
The top five countries account for over 67% of 2004 installations and nearly 80% of total wind energy installations worldwide. 
Italy, the Netherlands, Japan, and the U.K., are above or near the 1,000-MW mark. 
Europe continued to dominate the global market in 2004, accounting for 72.4% of new installations (5,774 MW). 
Asia had a 15.9% share (1,269 MW), North America (6.4%; 512 MW), Pacific Region (4.1%; 325 MW), Latin America /Caribbean (49 MW), Africa (47 MW).
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