Atlantic Wind Connection Offshore Submarine Cable

Superconducting Cable

PIPELINE TRANSMISSION CAPITAL COST

transmission, per MW-km of transmission service.

COMPARABLE TO or lower than electricity

• GH2 Pipeline: 36" Composite

Clean line: Rock Island, Grain Belt

Clean line: Tallgrass, Plains & Eastern

● NH₃ Pipeline: 36" Steel

Capacity - GW

Alternatives to Electricity Systems for Total De-carbonization and De-GHG-emission of the Entire Human Enterprise: Hydrogen and Ammonia Pipeline Systems

●Natural Gas: Alaska

Oil: Keystone XL ●

Bill Leighty, The Leighty Foundation, Juneau, AK USA

www.leightyfoundation.org/earth.php

Storage System

Ratings

wleighty@earthlink.net

- Use pipeline networks, rather than the electricity grid, solving the three salient technical problems of renewable energy (RE) at lower cost:
 - 1. Transmission: from diverse, stranded, remote, rich RE resources
 - 2. Storage: intermittent RE becomes annually firm and dispatchable
 - 3. Integration: with conventional, extant energy, for firm quality supply
- Design and optimize complete RE systems, at local and continental scales, from sunlight, wind, and water resources to dispatchable, delivered energy services:
 - Generation Gathering Firming storage - End use
 - Transmission Combined-heat-and-power (CHP)
- Annually-firm RE supplied via very low capital cost storage, less than \$US 1.00 / kWh:
 - → Gaseous Hydrogen (GH2) in large salt caverns, where geology is available
 - → Liquid Ammonia (NH₃) in carbon steel surface tanks
 - → Interconnected via continental underground pipelines, adding storage
 - → Lower cost than any contemplated "electricity" storage components
- We now need pilot plants for both GH2 and NH₃ RE systems, by which to:
 - → Discover and demonstrate scaleable technical proof-of-concept and economics → Explore optimum system topology for sources, components, and end-uses
 - **→** Motivate private-public collaboratives to conceive RPF's and RFQ's for the plants
- Humanity's goal is to eventually "Run the World on Renewables" plus some nuclear?
 - **→** Earth's richest RE is stranded, far from markets with no transmission
 - → We cannot do this entirely via electricity, and should not try to do so; "Smart Grid" is demand side management (DSM); no inherent new capacity

 - → Therefore, we design alternatives and adjuncts to the electricity grid:
 - Convert all RE at sources to Gaseous Hydrogen (GH2) or Ammonia (NH₃) fuels
 - Deliver these C-free fuels via underground pipelines for transport and CHP

GASEOUS HYDROGEN (GH2)

- RE-source electricity splits water to Hydrogen (H2) and Oxygen (O2) in electrolyzers
 - → H2 is buoyant, low-viscosity, low volumetric energy density, C-free fuel
 - → ICE, CT, and Fuel Cell run well on H2, with only H2O exhaust
 - → Byproduct 02 may be sold to adjacent biomass and coal gasification
- High-capacity underground pipelines gather and deliver GH2 fuel:
 - → Via local and continental networks, including storage caverns
 - → From diverse sources: pipeline pilot plant concept
 - → For transportation fuel via Fuel Cells to electric drive
- → For combined-heat-and-power (CHP) stationary plants
- High-pressure-output electrolyzers allow:
 - → Feeding the transmission pipeline directly, or with minimum compression, at ~ 100 bar
 - **→** Long-distance transmission with no mid-line compression;
 - low-viscosity H2 saves capital and energy costs
- Low-cost, large-scale storage provides firm, dispatchable, RE supply:
 - → By pipeline packing
 - → In salt cavern arrays at < \$US1.00 / kWh capital cost
 - → At end-users in mobile and stationary GH2 fuel tanks

No compressors; high-pressure electrolyzers directly feed pipeline 100 bar input; 30 bar delivery at market

ANHYDROUS AMMONIA (NH₃)

- Both Fuel and Fertilizer: C-free, "the other hydrogen"
 - → ICE, CT, and Fuel Cell run well on NH₃ with only H2O and N2 exhaust
 - → High-energy-density Hydrogen carrier and energy storage medium → Half the volumetric energy density of diesel

 - → Inhalation hazard; toxic at high concentration, detectable at very low
- → Buoyant, dissipates, great affinity for water
- Easily pipelined and stored at low cost, as liquid
 - → Liquid at 10 bar or -33 C at 1 atm
 - → Carbon steel pipelines and tanks common in Corn Belt, USA
 - → Decades of good safety record: >140M tons / year worldwide N-fertilizer
- Infrastructure in place for "green" NH₃ transmission and storage in USA:
 - → 4,000 km underground pipelines, New Orleans through Corn Belt → Many surface tanks of 10,000 to 60,000 tons each
 - → Rollout strategy: "wheel" RE-source "green" NH₃ to fuel customers,
 - via extant infrastructure, as utilities now wheel green electricity
- Eight annual Ammonia Fuel Association conferences hosted by Iowa State University: http://www.energy.iastate.edu/renewable/ammonia/ammonia.htm

COMPRESSORLESS

Caverns, Distributed at

PIPELINE SYSTEM

Pack Pipeline, Salt

STORAGE:

End-users

NORTHWEST IOWA, USA 2.5 MW wind turbines, connected at great expense to the electricity grid, could be producing "green" NH3 fuel and fertilizer for the farms, with no grid connection.

"ATMOSPHERIC" LIQUID AMMONIA STORAGE TANK -33 C, 1 atm 30,000 Tons NH3 = 190,000 MWh energy storage \$US 15M turnkey capital cost: \$ 80 / MWh \$ 0.08 / kWh

HYDROGEN TRANSPORT COSTS

GH2 Pipeline is Lowest-Cost Hydrogen

Transport Method at Long Distance and

High Power (W. Amos, NREL, USA, '98)

Fully harvesting just the wind energy of the twelve windiest

• Provides ~ 120,000 MWh of energy storage, for 1,600

km pipeline, 36" diam, "unpacked" from 70 to 35 bar.

• Requires ~400 new pipelines, 36" diam, 70 bar,

Capital Cost is Far Smaller than any Electricity Storage

GH2 PIPELINE STORAGE

states of USA, delivering it all as GH2:

capacity ~2,500 tons per day GH2 each

Avoids Hydrogen Embrittlement

Continuous field fabrication

process for unlimited length

Bacteria: Rhodobacter sphaeroides

PHOTOBIOLOGICAI

TYPICAL GH2 STORAGE CAVERNS

IN DOMAL SALT: Multiple Caverns

800,000 cubic meters physical volume

2,500,000 kg GH2 net "working" storage

Pressure: 150 bar max, 50 bar min

90,000 MWh net energy storage

\$US 15M / cavern capital cost

\$US 160 / MWh = \$0.16 / kWh

Share Surface Facility

4,000 KM OF NH3 PIPELINE **AND STORAGE TANKS** are in place in Corn Belt, USA, for "green" ammonia fuel market NuStar Energy LP ammonia system (orange)

NH3 IS THE SECOND-HIGHEST-VOLUME CHEMICAL IN WORLD TRADE. Bulk "green" RE-source NH3 may thus be exported from large, stranded, RE resources.